Catalyzed and non-Catalyzed Strategies for the Synthesis of Emerging Fluorinated Motifs and Valorisation of Greenhouse Gases

<u>Anis Tlili¹*</u>

¹ ICBMS - (UMR CNRS 5246 - Lyon) Bâtiment Lederer, 1 rue Victor Grignard 69622 Villeurbanne Cedex - France *e-mail: <u>anis.tlili@univ-lyon1.fr</u>

Our group is focusing on the developments of new methodologies or catalysts for the activation and valorisaiton of small molecueles.^[1] In this context, the lecture will be dedicated to show the recent advances made in our laboratory. A new concept to access fluorinated compounds using CO₂ as a C1 source and deoxyfluorination reagents.^[2] Afterwards, the activation of the most greenhouse gas will be presented. Herein, a new reagent was designed able to perform deoxyfluorination reactions as well as C-SF₅ bond formation.^[3] Moroever, the development of new methodologies to access unprecedented N(SCF₃)CF₃ motif and their subsequent uses will be also presented.^[4] Finally, the last part of the tal will be dedicated to the developpement of new carboxylative cross coupling process under transition metal catalysis/photocatalysis.^[5]

Scheme 1.

References

[1] For selected contribution from our group please see: Angew. Chem. Int. Ed. 2018, 57, 11781 ; Angew. Chem.

Int. Ed. 2020, 59, 18948; ACS Catal. 2023, 13, 12553

- [2] Angew. Chem. Int. Ed. 2019, 58, 12545.
- [3] Angew. Chem. Int. Ed. 2022, 61, e202204623
- [4] Chem. Sci. 2023, 14, 3893.
- [5] Chem. Eur. J. 2023, 29, e202301271